skip to main content


Search for: All records

Creators/Authors contains: "Green, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc>

    Levin-Wen string-net models provide a construction of (2+1)D topologically ordered phases of matter with anyonic localized excitations described by the Drinfeld center of a unitary fusion category. Anyon condensation is a mechanism for phase transitions between (2+1)D topologically ordered phases. We construct an extension of Levin-Wen models in which tuning a parameter implements anyon condensation. We also describe the classification of anyons in Levin-Wen models via representation theory of the tube algebra, and use a variant of the tube algebra to classify low-energy localized excitations in the condensed phase.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. Abstract

    The deaths of massive stars are sometimes accompanied by the launch of highly relativistic and collimated jets. If the jet is pointed towards Earth, we observe a ‘prompt’ gamma-ray burst due to internal shocks or magnetic reconnection events within the jet, followed by a long-lived broadband synchrotron afterglow as the jet interacts with the circumburst material. While there is solid observational evidence that emission from multiple shocks contributes to the afterglow signature, detailed studies of the reverse shock, which travels back into the explosion ejecta, are hampered by a lack of early-time observations, particularly in the radio band. We present rapid follow-up radio observations of the exceptionally bright gamma-ray burst GRB 221009A that reveal in detail, both temporally and in frequency space, an optically thick rising component from the reverse shock. From this, we are able to constrain the size, Lorentz factor and internal energy of the outflow while providing accurate predictions for the location of the peak frequency of the reverse shock in the first few hours after the burst. These observations challenge standard gamma-ray burst models describing reverse shock emission.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    The optical-ultraviolet transient AT 2021loi is located at the center of its host galaxy. Its spectral features identify it as a member of the Bowen fluorescence flare (BFF) class. The first member of this class was considered to be related to a tidal disruption event, but enhanced accretion onto an already active supermassive black hole was suggested as an alternative explanation. Having occurred in a previously known unobscured active galactic nucleus, AT 2021loi strengthens the latter interpretation. Its light curve is similar to those of previous BFFs, showing a rebrightening approximately 1 yr after the main peak (which was not explicitly identified but might be the case in all previous BFFs). An emission feature around 4680 Å, seen in the preflare spectrum, strengthens by a factor of ∼2 around the optical peak of the flare and is clearly seen as a double-peaked feature then, suggesting a blend of Niiiλ4640 with Heiiλ4686 as its origin. The appearance of Oiiiλ3133 and possible Niiiλλ4097, 4103 (blended with Hδ) during the flare further support a Bowen fluorescence classification. Here we present ZTF, ATLAS, Keck, Las Cumbres Observatory, NEOWISE-R, Swift AMI, and Very Large Array observations of AT 2021loi, making it one of the best-observed BFFs to date. It thus provides some clarity on the nature of BFFs but also further demonstrates the diversity of nuclear transients.

     
    more » « less
  4. Floods are often associated with hurricanes making landfall. When tropical cyclones/hurricanes make landfall, they are usually accompanied by heavy rainfall and storm surges that inundate coastal areas. The worst natural disaster in the United States, in terms of loss of life and property damage, was caused by hurricane storm surges and their associated coastal flooding. To monitor coastal flooding in the areas affected by hurricanes, we used data from sensors aboard the operational Polar-orbiting and Geostationary Operational Environmental Satellites. This study aims to apply a downscaling model to recent severe coastal flooding events caused by hurricanes. To demonstrate how high-resolution 3D flood mapping can be made from moderate-resolution operational satellite observations, the downscaling model was applied to the catastrophic coastal flooding in Florida due to Hurricane Ian and in New Orleans due to Hurricanes Ida and Laura. The floodwater fraction data derived from the SNPP/NOAA-20 VIIRS (Visible Infrared Imaging Radiometer Suite) observations at the original 375 m resolution were input into the downscaling model to obtain 3D flooding information at 30 m resolution, including flooding extent, water surface level and water depth. Compared to a 2D flood extent map at the VIIRS’ original 375 m resolution, the downscaled 30 m floodwater depth maps, even when shown as 2D images, can provide more details about floodwater distribution, while 3D visualizations can demonstrate floodwater depth more clearly in relative to the terrain and provide a more direct perception of the inundation situations caused by hurricanes. The use of 3D visualization can help users clearly see floodwaters occurring over various types of terrain conditions, thus identifying a hazardous flood from non-hazardous flood types. Furthermore, 3D maps displaying floodwater depth may provide additional information for rescue efforts and damage assessments. The downscaling model can help enhance the capabilities of moderate-to-coarse resolution sensors, such as those used in operational weather satellites, flood detection and monitoring. 
    more » « less
  5. null (Ed.)
    Integrated models combine multiple data types within a unified analysis to estimate species abundance and covariate effects. By sharing biological parameters, integrated models improve the accuracy and precision of estimates compared to separate analyses of individual data sets. We developed an integrated point process model to combine presence-only and distance sampling data for estimation of spatially explicit abundance patterns. Simulations across a range of parameter values demonstrate that our model can recover estimates of biological covariates, but parameter accuracy and precision varied with the quantity of each data type. We applied our model to a case study of black-backed jackals in the Masai Mara National Reserve, Kenya, to examine effects of spatially varying covariates on jackal abundance patterns. The model revealed that jackals were positively affected by anthropogenic disturbance on the landscape, with highest abundance estimated along the Reserve border near human activity. We found minimal effects of landscape cover, lion density, and distance to water source, suggesting that human use of the Reserve may be the biggest driver of jackal abundance patterns. Our integrated model expands the scope of ecological inference by taking advantage of widely available presence-only data, while simultaneously leveraging richer, but typically limited, distance sampling data. 
    more » « less
  6. Abstract Surprising social complexity and variability have recently been documented in several mammalian species once believed to be strictly solitary, and variation in resource abundance may drive this variation in sociality. Wagner et al. (Wagner, A. P., S. Creel, L. G. Frank, and S. T. Kalinowski. 2007. Patterns of relatedness and parentage in an asocial, polyandrous striped hyena population. Molecular Ecology 16:4356–4369) reported unusual space-use patterns among female striped hyenas (Hyaena hyaena) in central Kenya, where pairwise relatedness among females increased with the geographic distance separating them. The authors suggested that this pattern, very rare among mammals, might reflect attempts by females to avoid competition with close relatives for scarce resources in areas of range overlap. Here, we compare those data to new data, documenting genetic relatedness and space use in a previously unstudied wild population of striped hyenas in southern Kenya. We tested hypotheses suggesting that resource abundance and population density affect patterns of genetic relatedness and geographic distance in this species. Our results suggest that higher per capita prey density results in relaxed competition for food, and greater social tolerance among female striped hyenas. An hypothesis suggesting lower population density in the southern population was not supported. Relaxed resource competition may also lead to female–female cooperation in the southern population; we documented for the first time behavioral evidence of den sharing by adult female striped hyenas. Our data indicate that different populations of this little-studied species exhibit behavioral plasticity, in this case, markedly different space-use patterns and patterns of spatial relatedness under different ecological conditions. 
    more » « less
  7. Abstract

    While spatial heterogeneity of riverine nitrogen (N) loading is predominantly driven by the magnitude of basin‐wide anthropogenic N input, the temporal dynamics of N loading are closely related to the amount and timing of precipitation. However, existing studies do not disentangle the contributions of heavy precipitation versus non‐heavy precipitation predicted by future climate scenarios. Here, we explore the potential responses of N loading from the Mississippi Atchafalaya River Basin to precipitation changes using a well‐calibrated hydro‐ecological model and Coupled Model Intercomparison Project Phase 5 climate projections under two representative concentration pathway (RCP) scenarios. With present agricultural production and management practices, N loading could increase up to 30% by the end of the 21st century under future climate scenarios, half of which would be driven by heavy precipitation. Particularly, the RCP8.5 scenario, in which heavy precipitation and drought events become more frequent, would increase N loading disproportionately to projected increases in river discharge. N loading in spring would contribute 41% and 51% of annual N loading increase under the RCP4.5 and RCP8.5 scenarios, respectively, most of which is related to higher N yield due to increases in heavy precipitation. Anthropogenic N inputs would be increasingly susceptible to leaching loss in the Midwest and the Mississippi Alluvial Plain regions. Our results imply that future climate change alone, including more frequent and intense precipitation extremes, would increase N loading and intensify the eutrophication of the Gulf of Mexico over this coming century. More effective nutrient management interventions are needed to reverse this trend.

     
    more » « less